Lesson 7-7 (pp. 400–407)

Inverse Relations and Functions

Lesson Objective	NAEP 2005 Strand: Algebra	
V Finding the inverse of a relation or a function	Topic: Patterns, Relations, and Functions	
Tunction	Local Standards:	

Vocabulary and Key Concepts

Examples

a

1 Finding the Inverse of a Relation

a. Find the inverse of relation *m*.

h

Relation m

x	-1	0	1	2
y	-2	-1	-1	-2

Inverse of Relation m

x	-2	-1	-1	-2
у	-1	0	1	2

Interchange the *x* and *y* columns.

b. Graph *m* and its inverse on the same graph. Reverse the ordered pairs of relation *m* to graph the inverse of *m*.

Date

Check Understanding

1. a. Describe how the line y = x is related to the graphs of *m* and its inverse in Example 1.

The graph of the inverse of *m* is a reflection in the line y = x of the graph of *m*.

b. Is relation *m* a function? Is the inverse of *m* a function?

yes; no

Class_

Example

4 Composition of Inverse Functions For the function $f(x) = \frac{1}{2}x + 5$, find $(f^{-1} \circ f)(652)$ and $(f \circ f^{-1})(-\sqrt{86})$. Since *f* is a linear function, so is f^{-1} . Therefore f^{-1} is a function. So $(f^{-1} \circ f)(652) = \boxed{652}$ and $(f \circ f^{-1})(-\sqrt{86}) = \boxed{-\sqrt{86}}$.

Check Understanding

2. a. Does $y = x^2 + 3$ define a function? Is its inverse a function? Explain.

yes; no; For every *x*-value except 3 in the domain of the inverse there are two *y*-values.

b. Find the inverse of y = 10 - 3x. Is the inverse a function? Explain.

 $y = \frac{1}{3}x + \frac{10}{3}$; It is a function because for each *x*-value there is only one *y*-value.

- **3.** Let f(x) = 10 3x. Find each of the following.
 - **a.** the domain and range of f

domain: all real numbers; range: all real numbers

c. the domain and range of f^{-1}

domain: all real numbers; range: all real numbers

f^{-1}				
$f^{-1}(x) = \frac{-x+1}{3}$	<u>+ 10</u>			
-	$f^{-1}(x) = \frac{-x}{3}$	$f^{-1}(x) = \frac{-x+10}{3}$	$f^{-1}(x) = \frac{-x+10}{3}$	

d. $f^{-1}(f(3))$

3

Pearson Education, Inc., publishing as Pearson Prentice Hall.

4. For f(x) = 5x + 11, find $(f^{-1} \circ f)(777)$ and $(f \circ f^{-1})(-5802)$.

777; -5802